Studying late accretion and planetary differentiation using the ¹⁸⁴Os-¹⁸⁰W decay system

S.T.M. Peters^{1,2}, C. Münker^{1,2}, H. Becker³, T. Schulz⁴.

¹Institut für Geologie und Mineralogie, Universität zu Köln, Germany, ²Steinmann-Institut, Universität Bonn, Germany, ³Institut für Geologische Wissenschaften, Freie Universität Berlin, Germany, ⁴Department of lithospheric research, Universität Wien, Austria.

The abundance of 180 W in iron meteorites is variable and differs from the terrestrial value. Previously, we have shown that this variability can largely be explained by in situ radiogenic production of 180 W by α -decay of 184 Os ($t_{1/2} \sim 1.1 \times 10^{13}$ year) [1]. Consequently, geological processes that fractionate Os from W may be recorded in the 180 W inventories of planetary materials. Here, we elaborate on the possibility that the 180 W inventory of the silicate Earth was affected by the mixing of chondritic material that was derived from a 'late veneer' into the mantle. Furthermore, we demonstrate that terrestrial silicates display a resolvable deficit in 180 W relative to chondrites that is consistent with core formation \sim 4.5 Ga ago followed by differentiation of the silicate mantle. Some technical issues related to improving measurement precisions of 180 W are discussed. [1] Peters et al. (2013) *LPI* 1719, 2073